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Abstract
Traffic volumes are fundamental for evaluating transportation systems, regardless of travel mode. A lack of counts for non-
motorized modes poses a challenge for practitioners developing and managing multimodal transportation facilities, whether
they want to evaluate transportation safety or the potential need for infrastructure changes, or to answer other questions
about how and where people bicycle and walk. In recent years, researchers and practitioners alike have been using crowd-
sourced data to supplement the non-motorized counts. As such, several methods and tools have been developed. The objec-
tive of this paper is to take advantage of new data sources that provide a limited and biased sample of trips and combine
them with traditional counts to develop a practical tool for estimating annual average daily bicycle (AADB) counts. This study
developed a direct-demand model for estimating AADB in Texas. Data from 100 stations, installed in 12 cities across the
state, was used together with the crowdsourced Strava, roadway inventory, and American Community Survey data to
develop the count model for estimating AADB. The results indicate that crowdsourced Strava data is an acceptable predictor
of bicycle counts, and when used with the roadway functional class and number of high-income households in a block group,
can provide quite an accurate AADB estimate (29% prediction error).

Traffic volumes are fundamental for evaluating transpor-
tation systems, regardless of travel mode. A lack of
counts for non-motorized modes poses a challenge for
practitioners developing and managing multimodal
transportation facilities, whether they want to evaluate
transportation safety or the potential need for infrastruc-
ture changes, or to answer other questions about how
and where people bicycle and walk. Bicyclist and pedes-
trian counts that are not feasible to collect with field
equipment might be estimated through smartphone apps
and other online methods to leverage the knowledge of
networked communities, known as crowdsourcing.
Crowdsourcing apps, such as Strava and Ride Report,
have the potential to collect data at any time and loca-
tion that the apps are used. However, they are limited by
the number of users and the target market for the apps.
Crowdsourcing uses a broad pool of individuals through
an online platform that aggregates and formats the infor-
mation for a specific use. The companies aggregate these
trips onto a transportation system network, process them
for privacy, and then re-sell the information as a crowd-
sourced traffic data product, available in many places
around the globe.

The objective of this paper is to take advantage of
new data sources that provide a limited and biased sam-
ple of trips and combine them with traditional counts to
develop a practical approach for estimating the annual
average daily bicycle (AADB) counts. Crowdsourced
data can provide valuable insights for both the agencies
in relation to planning and policy decisions and road
users in relation to travel choices. These data sources can
be used to reveal quantitative insights into the behavior
of non-motorized road users, such as route choice, which
can support analysis of safety and mobility outcomes.
Although crowdsourced data has a much more extensive
coverage compared with non-motorized count stations,
nevertheless the data still represent a small percentage of
non-motorized users. For instance, researchers found
that 3%–9% of bicycle trips counted on trails in Austin
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used Strava at the time of the count (1). This percentage,
on the other hand, can change based on the location,
land use, non-motorized facility type, socioeconomic,
demographic, and meteorological factors (2–5).

Moreover, the travel behavior of app users may be
different from the population, therefore affecting the
functional form of the underlying process that generates
the crowdsourced data. For example, users of activity-
based smartphone apps are more consistent; therefore
the temporal data produced by these users are stationary,
in that the time series data generated from these apps
may not exhibit significant seasonal patterns. In contrast,
observed non-motorized user counts are highly volatile
and non-stationary. Other challenges of using crowd-
sourced data include quality control, data redundancy,
sampling biases, data conflation, and other issues. This
study used crowdsourced Strava, roadway characteris-
tics, household income, and population demographics
data to develop direct-demand models for estimating the
AADB counts in Texas.

The rest of this paper is organized as follows. A litera-
ture review in the second section discusses the previous
research on this subject. The third section describes data
used in the study and the modeling approach for devel-
oping the direct-demand models. The fourth section pre-
sents the results of data mining and data analysis. The
paper ends with conclusions, acknowledgments, author
contributions, and references.

Background and Methodology

Literature Review and Importance of Research

Research on monitoring active transportation modes
such as bicycling has supported advancements in prac-
tice, including reference-quality counts using permanent
traffic recorders (6, 7), and new approaches to crowd-
source bicycling activity in addition to passive sensing
using smartphones and other digital devices (8, 9).
Advancements in different approaches to bicycle count-
ing support performance monitoring, including the criti-
cal challenge of comparing collision risk. Permanent
counters provide continuous bicycle counts, often in 15-
minute bins, but are relatively expensive to install and
maintain—and therefore are seldom used to date (10). In
addition, the permanent counters may record gaps data
because of power problems, vandalism, or insect activity
(11, 12). However, state departments of transportation
are building counting programs with high-quality equip-
ment, improving availability and predictability of refer-
ence stations (13, 14). These stations are critical for
understanding temporal variation of trips, but do not
cover the widespread locations needed for comprehensive
safety analysis. Newer sources of big data such as smart-
phone records can complement these permanent stations

by covering large areas, but they represent only a portion
of trips at any given location, and introduce bias related
to consumer use of the devices being tracked (2, 15, 16).
Whether called data fusion, expansion, or weighting (4,
17, 18), this research suggests opportunities for lever-
aging the relative advantages of sparse and big data to
improve understanding of bicycle traffic for planning
and safety.

Multiple companies aggregate bicycle trips recorded by
individuals. However, Strava Metro is the only service that
provides a dataset in multiple temporal aggregations for
practical analysis in GIS-ready data formats. Evidence
from earlier research and practice show predominant rep-
resentation in Strava by a fitness and recreation-oriented
market, nonetheless it supports a range of practical uses,
including understanding where bicyclists ride for health
(19), relative collision exposures (5, 20), and temporal var-
iation (21). The Oregon Department of Transportation
explored practical use of Strava Metro soon after the ser-
vice became available, finding it useful to identify routes
with high bicycling ridership, but also a need to ‘‘expand
this information up to total bike riders’’ (22). An extensive
review of big data for bicycling research suggested a
research agenda exploring combinations of crowdsourced
and traditional information to develop new insights on
travel and analysis methods that scale beyond current
approaches (23). To date, published approaches for scaling
crowdsourced data include a focus on the use of popula-
tion and traffic counters (20), and multi-factor Poisson
regression in Maricopa County, Arizona (24). Though
some studies have combined crowdsourced data with traf-
fic counts and environmental data to understand bicycling
contexts better, we suggest that both practitioners and
researchers could benefit from a clear approach to expand
crowdsourced data to estimate meaningfully the total vol-
ume of bicycling trips.

Research on improving bicycle traffic volume data
contributes to the challenge of analyzing bicyclist safety
by quantifying a denominator for a collision ratio.
Bicycle volumes help planners know whether infrastruc-
ture changes affect the safety risk of bicycling, in addi-
tion to route preferences, equity, and other measures.
This study builds on recent work to combine the advan-
tages of emerging big data sources with high-accuracy
reference stations. The following method section details
the authors’ approach in the State of Texas.

Methodology

Models support planners’ and researchers’ ability to
understand transportation trends and scenarios based on
limited data and to analyze policy and infrastructure
changes for immediate and future contexts. Bicycle trans-
portation models support analysis of the likelihood of
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cycling in a variety of conditions (25), including built
environment factors (26), seasonal and weather factors
(27), and temporal variation (28). Researchers’ continu-
ing model improvements may nonetheless be difficult to
replicate or integrate into planning practice.

Bicycle count data forms the basis for model calibra-
tion, and the model accuracy requires balance with avail-
able resources (29). More resource-intensive models such
as tour generation and mode split and route choice models
require substantial data and expertise, while GIS index and
direct-demand models may sacrifice accuracy. Methods to
improve model calibration include increasing the number
of count locations and times through short-term counts
(30) and examining bicycle traffic over larger areas through
crowdsourced data collected by smartphone users (31).
Crowdsourcing was first popularized in transportation
planning as a public participation method to collect ideas
from a broad range of people, and the approach is becom-
ing more prevalent to monitor traffic (32). Regardless of
input traffic data, bicycle traffic models can be assessed
and improved through rigorous evaluation (33).

Random Forests. Because the list of potential factors for
including in the regression is very comprehensive, this
study used a data mining tool, random forests (RF), to
select the list of most important factors explaining the
relationship between ground counts and Strava activity.
RF method was proposed by Breiman and is considered
to be one of the most efficient classification methods (34).
Instead of using support vector machine or other machine
learning tools, RF was used in this study because of its
variable importance measure, one of the most significant
byproducts of RF. The classification accuracy and Gini
impurity measure variable importance ranking. This
importance measure shows how much the mean squared
error or the impurity increase when the specified variable
is randomly permuted. If prediction error does not change
by permuting the variable, then the importance measures
will not be altered significantly, which in turn will change
the mean squared error (MSE) of the variable only
slightly (low values). This implies that the specified vari-
able is not important. On the contrary, if the MSE signifi-
cantly decreases during the permutation of the variable
then the variable is deemed important.

The classification accuracy measure of the variable is
averaged over the number of trees, B, used to construct
the RF:

MDA xið Þ=
PB

tree= 1 MDAtree xið Þ
B

ð1Þ

where MDA xið Þ is the average importance rate of the
variable xi and MDA xið Þ is the importance rate of the
same variable in tree= treeb, b= 1, ...,Bf g.

The mean decrease in Gini impurity computes the
contribution of the variable to the homogeneity of the
nodes and leaves in the resulting RF. The Gini coeffi-
cient is a measure of homogeneity from 0 (homogeneous)
to 1 (heterogeneous):

MDGn xið Þ= 1�
XK

k = 1

p(kjn) ð2Þ

where MDGn xið Þ is the Gini impurity coefficient of the
variable xi at the node n, p kjnð Þ is the probability of class
k in node n (weights), and K is the number of classes.

A higher MDA and MDG indicate higher variable
importance. This study used the RF method to select the
most important factors affecting the AADB demand.

Bicyclist Direct-Demand Model. Traditionally, bicycle
demand has been estimated using several approaches,
such as adjustment factors (35), ordinary least squares
regression, or count data models (5, 17, 36). The founda-
tional building block of count data models is Poisson
regression. In this model, it is assumed that the count
data follow a Poisson distribution, which is a discrete
probability distribution; for example, the number of bicy-
clists traveling across a roadway segment or crossing an
intersection over a fixed time interval (e.g., every day) fol-
lows a Poisson distribution. In Poisson distribution mean
and variance of count data are assumed to be equal.
Although this condition may hold for relatively big data,
however, most of the data sets used in non-motorized
data studies are relatively small. Therefore most research-
ers use a negative binomial model, which is a standard
choice for basic count data. The negative binomial regres-
sion model has the following functional form:

AADBi =exp
XK

k = 1

bk 3 Xk, i + ei

 !
ð3Þ

where AADBi � is the AADB number at segment i; bk�
is the coefficient estimate, Xk, i� is the matrix of explana-
tory variables at site i, and ei� is the error term, which
represents the unobserved conditions of site i. The error
term of the negative binomial model is then assumed to
follow a gamma distribution with mean variance a2,
exp eið Þ; G 1,a2ð Þ. a is also referred to as an overdisper-
sion parameter; lower overdispersion indicates a better
model fit.

Data Overview

Count Data Collection and Quality Assurance

The bicycle count data used in this study was collected as
part of Texas Department of Transportation (TxDOT)
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project 0-6927 (37) and is readily available through the
Texas Bicycle and Pedestrian Count Exchange Program
website (38). This section briefly describes the data collec-
tion and quality control process. A more comprehensive
data collection and quality check process can be found in
Turner et al. (39).

Bicycle count data were collected from 155 locations
across 12 cities in Texas: Austin, Brownsville, Corpus
Christi, Dallas, Houston, League City, Lubbock,
Midland, Odessa, Plano, San Antonio, and Wichita
Falls (Figure 1). Permanent bicycle counts were provided
by city and metropolitan planning organizations, while
temporary counts (at least seven days) were collected by
the project research team members using equipment
owned by TxDOT. Of these stations, 118 are permanent,
automatic bicycle (inductive loop) and pedestrian (infra-
red) counters operated by cities, metropolitan planning
organizations, and special districts such as the San
Antonio River Authority. The remaining count locations
used mobile bicycle (pneumatic tube) and pedestrian
(infrared) equipment. Bicycle counts were collected from
a wide variety of facility types, including shared-use
paths, bicycle lanes, shoulders, sidewalks, other paths,
unpaved facilities, and shared roadways. In urban areas,
agencies generally attempt to count recurring locations
on an annual basis; however, many have noted that
because of resource constraints, counts are either spora-
dic or occur every other year.

The bicycle count database was developed using the
Federal Highway Administration’s Traffic Monitoring
Guide (40). Each location was assigned two unique sta-
tion IDs to indicate the direction of travel. Table 1 shows
the list of available information per count station. The
count locations indicate the city and street names (i.e.,
station name), the station’s ID per travel direction, and
latitude and longitude, among other variables.

The data quality and consistency were checked by
examining the location information as well as the trend
and seasonal patterns observed in daily counts. Count
data obtained from agencies were already quality
checked. Therefore the quality check was primarily car-
ried out for the temporary counts. The daily bicycle
counts were assigned to three groups and were either
removed or kept in the database:

� Valid counts. Bicycle counts are assumed to be
valid when data only appear during the days the
counter is installed at the facility, and there are no
sudden spikes or zero values. Other properties of
valid data points are associated with strong week-
end and consistent nightly uses. These data points
were kept in the database.

� Abnormal but valid (ABV) counts. ABV refers to
bicycle counts observed during special events (e.g.,
festivals and races) and abnormal weather. These
data were adjusted and added to the database.

Figure 1. Map of Texas showing number of permanent and temporary counters per city.
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� Invalid counts. Invalid counts occur when the
count data also appear during the days when the
equipment is not being used, and there are sudden
significant increase or decrease in bicycle counts
that are not associated with a special event or
abnormal weather. These errors can happen
because of several reasons such as the installation
of the counter, miscoding of the metadata, poor
or careless maintenance of the metadata, and
actual counting errors. The invalid data were
removed from the final database.

Crowdsourced Data

Strava Metro is a crowdsourced database that shows
bicycle or pedestrian activity for a given edge (segments)
or node (intersection). Strava Metro is the oldest and
largest source of crowdsourced bicycle volumes currently
available. Strava uses Open Street Map (OSM) for devel-
oping the geospatial count files. This service is a business
unit of Strava, which is a smartphone app and website
that seeks to ‘‘enhance the experience of sport and con-
nect millions of athletes from around the world.’’
Previous research has shown that Strava represents a
sample of health-oriented contributors and may not rep-
resent the broader bicyclist population. Strava includes
walking, running, and hiking trips, in addition to bicy-
cling trips.

Table 2 shows the list of variables available in Strava.
Note that in Strava, the roadway segments are labeled as
‘‘edges’’ while the intersections and segment endpoints
(e.g., cul-de-sac) are labeled as ‘‘nodes.’’ The number of
athletes and activities shows the number of bicyclists and
pedestrians on a given segment/intersection at the given
year, day, hour, and minute. The number of activities
indicates the total activity on a given edge or node, while
the number of athletes indicates the number of unique
user IDs on that edge or node. The difference between
the two indicators is that the athlete number is adjusted
such that if the same user appears on the edge or node
more than once, then it is recorded only once. In

contrast, the number of activities reports all the activi-
ties, regardless of the user ID.

Strava shows the number of bicyclists and pedestrians
for both directions of travel, however, it does not indi-
cate the default direction of travel. To identify the default
direction of travel, the following equation was used:

A= 180+ arctan Y2� Y1

X2� X1

� �
3

180

p
ð4Þ

Cardinal Direction=

WB if 1łA\90

SB if 90łA\180

EB if 180łA\270

NB if 270łAł360

8>><
>>: ð5Þ

Strava data from 2016 to 2018 was matched with the
bicycle counts collected from the aforementioned count
stations. Strava assigns several edges (i.e., segments) to
the same road segment based on the direction of travel,
and non-motorized facility (i.e., bike lane, sidewalk, etc.).
To match the count stations with the correct Strava edge,
the name of the street and the direction of travel were
compared.

Table 3 presents the descriptive statistics of the per-
centage of bicyclists using the Strava app per OSM func-
tional class. As can be observed, the mean percentage of
Strava users varies from 6% to 16%, according to OSM
functional class.

Socioeconomic Factors and Roadway Data

A list of potentially important variables that can help to
explain the relationships between the observed bicycle
counts and Strava activity was compiled. For this

Table 1. Example of Count Location Information

Traffic Monitoring Guide variables Available information

Location ID 10
City Austin
Station name Guadalupe St N of W 21st St
Latitude –97.74187
Longitude 30.28419
Station ID travel direction 1 453-1-2-60-000354
Station ID travel direction 2 453-5-2-60-000355
Travel direction 1 Northbound
Travel direction 2 Southbound

Table 2. Strava Bicycle Count Database

Strava data Definition

Edge/node ID Numeric value indicating the segment or
intersection ID

From X/Y & to
X/Y

Beginning and ending latitude and
longitude of a Strava segment

Node X/Y Latitude and longitude of a Strava
intersection

Street name Street name of a Strava segment
Year, day, hour,

and minute
The timeframe of bicycle and pedestrian

counts
Athlete Number of bicyclists traveling the default

direction of travel
Reverse athlete Number of bicyclists traveling the

opposite direction of travel
Activity Number of bicyclists/pedestrians traveling

the default direction of travel
Reverse activity Number of bicyclists/pedestrians traveling

the opposite direction of travel
Total activity Number of total bicyclists/pedestrians on

a given Strava segment/intersection
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purpose, the American Community Survey and the
TxDOT roadway inventory database were used.

The U.S. Census Bureau’s American Community
Survey (ACS) is a nationwide survey that delivers infor-
mation on social, economic, household, and other rele-
vant demographic characteristics about the U.S.
population every year. In general, the Census Bureau
contacts over 3.5 million U.S. households to participate
in the ACS every year. One of the unique features of
using ACS is its ability to produce estimates on a wide
range of geographies, including low geographic levels
such as block groups. Block group level ACS data for
Texas was collected. As ACS contains an extensive list of
variables, the variable selection was conducted by using
RF (discussed above).

TxDOT maintains a database that includes a variety of
roadway characteristics. This database, known as the
Roadway Highway Inventory Network Offload (RHiNO),
can be used to supplement information from the crash
database. This database primarily provides road character-
istic information, including the estimated traffic volume
and corridor length, for every known road in Texas.

The acquired databases were conflated on the Strava
network using ArcMap 10.5.1. It is important to note
that observed bicycle count data is a point data, Strava
and RHiNO are polynomial, and ACS is polyline data.
Table 4 presents the descriptive statistics of all the vari-
ables and data sources considered for the analysis.

The following steps were followed to conflate the
data:

1. From the ACS block group geodatabase, select
tables with population, housing unit, and income
data.

2. Assign block group level information to the
Strava segments. If a Strava segment passes
through two or more block groups, assign mean
values of the block group level information to the
Strava segment.

3. Conflate RHiNO roadway level data to the Strava
segments.

Results

After removing the sites with missing data and with
short-term counts (i.e., one week), 100 out of 155 sta-
tions were used to develop the direct-demand models for
estimating AADB. The counts from short-term stations
were used to cross-validate the estimation results; and
the leave-one-out approach was used to cross-validate
the AADB models. Finally prediction analysis was con-
ducted using the estimation results, and the observed
and predicted AADB were compared.

Selection of the Most Influential Factors

RF methodology was used to select the most influential
factors. Figure 2 shows a list of the most important fac-
tors affecting the relationship between average Strava
activity and ground counts according to two important
measures discussed above: mean decrease accuracy
(Figure 2a) and Gini impurity (Figure 2b).

The initial analysis results indicate that household
income and demographic variables are very influential
for explaining bicyclist counts (Figure 2). Because most
of these variables belong to the same category, the most
important variables from each category were selected
and RF analysis was conducted again. Figure 3 shows
the results of the second RF test.

Finally, the following variables were found to be the
most important for explaining the AADB counts: Strava
sample (Strava), OSM functional class (Strava), the male
population in the age group 35–49 (ACS), number of
households with income of more than $200,000 per
annum (ACS), number of lanes (RHiNO), and roadway
facility type (RHiNO).

AADB Direct-Demand Models

As can be observed, two sets of important variables have
been identified. The first set of variables includes only
OSM functional class and ACS factors. The second set
of variables is from the TxDOT roadway inventory
(RHiNO). Therefore two direct-demand models were
developed based on the need and availability of data.
The first model, which is also more parsimonious,
included only OSM and ACS variables. The second
model included OSM, ACS, and RHiNO variables. The
estimation results of the two models indicated that the
male population in the age group 35–49 was not statisti-
cally significant in either. In the second model, the OSM
functional class was not found to be statistically

Table 3. Proportion of Strava to Bicycle Counts per Open Street
Map (OSM) Functional Class (Annual Average Daily Counts)

OSM functional
system

Sample
size (n)

Strava user percentage

Min. Max. Mean SD

Primary 5 1% 35% 8% 0.04
Secondary 20 0% 19% 6% 0.02
Tertiary 11 0% 70% 16% 0.13
Residential 29 0% 100% 7% 0.19
Path 9 0% 75% 8% 0.06
Cycleway 19 0% 100% 7% 0.09
Footway 7 0% 100% 6% 0.12

Note: Min. = minimum; Max. = maximum; SD = standard deviation.
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Table 4. Descriptive Statistics of Variables

Variable name Source
Unit of
analysis Min. Max. Mean SD

Quantitative variables
Land area (km square) ACS Polygon 200,328 9,917,652 1,749,294 1,889,419
Total population ACS Polygon 486 8,977 1,992.69 2,071.78
Population density ACS Polygon 532.05 23,989.05 4,680.44 4,771.44
Total female Population ACS Polygon 242 4622 957.86 929.77
Female, age 15–20 ACS Polygon 0 3970 183.91 744.48
Female, age 21–34 ACS Polygon 29 1543 314.05 354.4
Female, age 35–49 ACS Polygon 0 868 151.36 187.58
Female, age 5–14 ACS Polygon 0 310 95.54 84.89
Female, age 50–64 ACS Polygon 0 309 130.32 90.21
Female, age 65–85 ACS Polygon 0 471 82.67 91.12
Total male population ACS Polygon 180 6,230 1,034.82 1,241.49
Male, age 15–20 ACS Polygon 0 2,996 164.94 564.29
Male, age 21–34 ACS Polygon 0 3,016 364.94 577.47
Male, age 35–49 ACS Polygon 18 1677 209.65 312.03
Male, age 5–14 ACS Polygon 0 362 94.79 78.07
Male, age 50–64 ACS Polygon 11 883 145.57 167.81
Male, age 65–85 ACS Polygon 0 246 54.94 54.34
Total number of households ACS Polygon 24 2317 689.78 512.43
Household density ACS Polygon 0.00026 0.0031 0.00073 0.00074
Household income (HHI) 10K ACS Polygon 0 134 47.83 41.78
HHI 15K ACS Polygon 0 101 23.39 28.8
HHI 20K ACS Polygon 0 148 26.99 37.42
HHI 25K ACS Polygon 0 85 22.57 27.49
HHI 30K ACS Polygon 0 113 20.57 25.99
HHI 35K ACS Polygon 0 63 14.4 18.08
HHI 40K ACS Polygon 0 146 22.97 26.36
HHI 45K ACS Polygon 0 160 25.35 26.87
HHI 50K ACS Polygon 0 65 21.31 20.04
HHI 60K ACS Polygon 0 275 68.97 72.9
HHI 75K ACS Polygon 0 261 69.25 71.19
HHI 100K ACS Polygon 0 361 85.71 81.41
HHI 125K ACS Polygon 0 227 67.2 58.2
HHI 150K ACS Polygon 0 167 33.69 39.48
HHI 200K ACS Polygon 0 241 55.43 61.12
HHI . 200K ACS Polygon 0 755 84.15 108.02
Annual average daily bicycle counts Manual Point 1 669 66.93 127.68
Non-motorized facility width Manual Polyline 4 25 8.47 4.13
Non-motorized facility buffer width Manual Polyline 0 5 2.91 0.84
Median width RHiNO Polyline 0 16 4.6 2.66
Number of lanes RHiNO Polyline 0 6 2.75 1.09
Posted speed limit RHiNO Polyline 0 55 17.35 16.75
Inside shoulder width RHiNO Polyline 0 10 0.3 1.71
Outside shoulder width RHiNO Polyline 0 20 0.6 2.95
Surface width RHiNO Polyline 0 76 33.85 16.33
Average activity (AvgActivity) Strava Polyline 0 81 4.8 12.38

Variable name Source

Unit of
analysis Variable description

Qualitative variables
City Manual Polygon Austin, Brownsville, Corpus Christi, Dallas, Houston, League City, Lubbock, Midland,

Odessa, Plano, San Antonio, Wichita Falls
Non-motorized facility type Manual Polyline Shared-use path; on-street bike lane
Parking Manual Polyline No on-street parking; parallel parking
Pavement condition Manual Polyline Poor; fair; good; excellent
Pavement type Manual Polyline Asphalt; concrete; crushed granite/gravel
Place of interest (POI) within 50 miles Manual Polyline High school; university
Shade Manual Polyline None; partial; full
Street lighting Manual Polyline None; one side; both sides; partial
Transit Manual Polygon No; yes
Functional classification RHiNO Polyline Principal arterial; minor arterial; collector; local; shared path or trail
OSM functional system (CLAZZ)a Strava Polyline 15 = Primary; 21 = Secondary; 31 = Tertiary; 32 = Residential; 72 = Path;

81 = Cycleway; 91 = Footway

Note: ACS = American Community Survey; RHiNO = Roadway Highway Inventory Network Offload; Min. = minimum; Max. = maximum; SD = standard deviation.
aDefinition of Open Street Map (OSM) functional class or highway link can be found in this link: https://wiki.openstreetmap.org/wiki/Key:highway.
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Figure 2. Preliminary list of important variables: (a) mean decrease accuracy and (b) mean Gini impurity.

Figure 3. Final list of important variables: (a) Open Street Map functional class and (b) roadway functional system.
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significant, therefore it was removed from this model.
The resulting models have the following functional form:

AADBi = exp(b0 +b1 3AADB Stravai

+b2 3 Household.200Ki + +b3 3OSM Classi)

ð6:1Þ

AADBi = exp(b0 +b1 3AADB Stravai

+b2 3 Household.200Ki +

+b3 3Func: Systemi +b4 3Num: of Lanesi)

ð6:2Þ

where AADBi � represents the estimated AADB at seg-
ment/edge i; AADB Stravai represents the annual aver-
age daily Strava users at location i for the given time
period; Household.200Ki represents the number of
households with more than $200,000.00 annual income;
OSM Classi represents the OSM functional class of the
Strava segment; Func: Systemi represents the roadway
functional system according to RHiNO; Num: of Lanesi

represents the number of lanes on the roadway segment;
and bk� are the coefficient estimates.

The leave-one-out method was used to cross-validate
the estimation results. In this approach, the negative
binomial models are developed by using all but one
observation. Therefore a total of 100 models are devel-
oped, and the MSE is calculated by comparing the pre-
dicted and observed value of the remaining observation.
Finally the leave-one-out cross-validation (LOOCV)
error was calculated by averaging the prediction error of

all 100 models. Table 5 shows the estimation results for
both models, together with the LOOCV error, model
overdispersion, and R-squared value. Both models have
a relatively lower overdispersion parameter (~1) and
higher R2 values (\0.7), indicating that both models are
a good fit for the data.

Prediction Analysis. Finally, using the model estimation
results, the AADB counts were predicted and compared
with the observed counts. Figure 4 indicates the predic-
tion intervals of the two models, while Table 6 reports
the error measures for the two models. As can be
observed, the prediction error of the OSM-based model
is relatively better than the RHiNO-based model (29%
versus 38%).

Model Interpretation and Discussions

The direct-demand models indicate that crowdsourced
Strava data together with roadway functional class (or
system) and the number of high-income households can
provide a relatively accurate estimate of AADB counts.
This traffic estimation technique is designed to work
even with zero Strava activities, by using minimal values
observed with manual counts throughout the state.

Table 7 can be used to review against estimates with
Strava sample counts in Texas for counts taken between
2016 and 2018, or adapted for other contexts using the
methods proposed in this paper. Note that all these

Table 5. Direct-Demand Model Estimation Results

Model 1 Model 2

Variables Estimate SD p-value Estimate SD p-value

Open Street Map highway functional class Primary 4.138 0.053 \0.001 na na na
Secondary 2.590 0.060 \0.001 na na na
Tertiary 3.078 0.062 \0.001 na na na
Residential 2.862 0.037 \0.001 na na na
Path 4.271 0.031 \0.001 na na na
Cycleway 4.144 0.027 \0.001 na na na
Footway 3.323 0.062 \0.001 na na na

Functional system Collector (Minor) na na na 3.211 0.078 \0.001
Local road na na na 2.506 0.083 \0.001
Minor arterial na na na 2.987 0.118 \0.001
Principal arterial na na na 3.929 0.116 \0.001
Shared path or trail na na na 4.270 0.035 \0.001

AADB Strava 0.038 0.000 \ 0.001 0.031 0.000 \0.001
Number of households with .200K income 0.002 0.000 \ 0.001 0.002 0.000 \0.001
Number of lanes na na na –0.066 0.027 \0.05
LOOCV error 187 586
Overdispersion 0.967 1.172
R2 (model accuracy) 75% 70%

Note: SD = standard deviation; AADB = annual average daily bicycle count; LOOCV = leave-one-out cross-validation; na = not applicable.
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estimates are associated with a 29% error rate and are
not directly transferrable to other contexts.

There are several reasons why this model might over-
or-under predict bicycle traffic. Strava use itself may be
particularly high or low in a particular area. It might
over-estimate such if a major event was routed through
the area during the Strava sampling period, or under-
estimate if Strava use is particularly low. Researchers
expect higher fluctuations in rural areas with lower over-
all Strava use, as compared with urban areas. Though
the model is calibrated to on-ground traffic counts,
future research should further evaluate model accuracy

through cross-validation using more counting sites as
they become available.

Changes in segment classification over time, such as
upgrading a street from a tertiary to secondary segment,
could significantly affect bicycle traffic estimation values.
Similarly, any errors in the classification will expand the
error of the traffic estimate. High-income households
have a relatively minor, yet statistically significant, role
in scaling Strava activities to estimate totals. However,
there may be areas that do not respond to household
income in an average manner, such as bicycling loops in
large parks. The use of the route in the park may be
rather homogenous, but nearby residential income could
skew traffic estimates when they do not, in practice,
affect bicycling rates.

Conclusions and Recommendations

Several different approaches to leverage crowdsourced
data from Strava Metro to estimate bicycle volumes
across the State of Texas were explored, focusing on data

Table 6. Relative Accuracy per Strava Percentage Categories

Prediction error measure Model 1 Model 2

Mean absolute percentage error 29% 38%
Mean squared error 5,855 4,836
Mean absolute error 41 42

Figure 4. Predicted versus observed annual average daily bicycle count: (a) Model 1 and (b) Model 2.

Table 7. Estimated Number of Bicycle Counts Given Strava Sample and Roadway Class in Texas, 2016–2018

Strava sample counts

Open Street Map functional class

Primary Secondary Tertiary Residential Path Cycleway Footway

0 63 13 22 17 72 63 28
5 76 16 26 21 87 76 34
10 92 19 32 26 105 92 41
20 134 29 46 37 153 135 59
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that practitioners can regularly obtain and implement in
their estimates following this guide. Therefore, the data
used was limited to Strava Metro’s standard data prod-
uct, TxDOT’s roadway inventory, and ACS data.
Following the recommended practice, negative binomial
regression was used to develop the direct-demand model
for estimating AADB (41, 42)

It was found that functional classification, or the type
of roadway or trail segment, is a key factor for estimat-
ing total use with crowdsourced data. This makes sense
because Strava is marketed toward a recreation/fitness-
oriented user base, and the researchers expected these
users to choose off-street paths more often, based on pre-
vious research (19). Therefore, Strava data was expected
to represent a relatively smaller proportion of users on
urban arterial streets, where bicyclists may ride more
often for work or shopping, rather than recreational
trips logged using Strava. Functional classification was
included to characterize the type of infrastructure on a
given segment in the models. It was found that the model
using the OSM classification had a lower prediction
error than the roadway classification offered by the
TxDOT roadway inventory data. This result indicates
that the methodology can be readily adopted or cali-
brated by other states. To reduce the estimation error
increasing the sample size of observed counts is recom-
mended. Moreover, using more sites from diverse types
of bicycle facilities may help to improve the accuracy for
different functional classes.

Preliminary model testing showed the number of
households with annual income of more than $200,000
was positively associated with the number of bicycle trips
recorded on Strava. This finding reinforces expectations
of a high-income bias to trip counts crowdsourced with
this platform (43). Therefore, transportation profession-
als should consider the role of an income bias in trip esti-
mates, and that factors from this study may have
different interactions in other contexts.

To develop the AADB models, the ground counts col-
lected from 100 count stations were used. The ground
counts were mainly collected from urban areas and shared-
use paths. Moreover, as indicated above, Strava uses OSM
as the base map. OSM classifies the roadways into 22 cate-
gories, while the sites used in this study represent just seven
of them. Although the model goodness of fit measures are
within an acceptable range (29% error margin, and 70%
accuracy level), the authors suggest that practitioners use
caution when implementing these models to estimate the
bicycle counts for rural segments and OSM functional
classes that are not included in this study.
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